Stability of First Order Ordinary Differential Equations with Colored Noise Forcing

نویسندگان

  • Timothy Blass
  • L. A. Romero
چکیده

We present a method for determining the stability of a class of stochastically forced ordinary differential equations, where the forcing term can be obtained by passing white noise through a filter of arbitrarily high degree. We use the Fokker-Planck equation to write a partial differential equation for the second moments, which we turn into an eigenvalue problem for a second-order differential operator. The eigenvalues of this operator determine the stability of the system. Inspired by Dirac’s creation and annihilation operator method, we develop “ladder” operators to determine analytic expressions for the eigenvalues and eigenfunctions of our operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Ordinary Differential Equations with Colored Noise Forcing

We present a perturbation method for determining the moment stability of linear ordinary differential equations with parametric forcing by colored noise. In particular, the forcing arises from passing white noise through an nth order filter. We carry out a perturbation analysis based on a small parameter ε that gives the amplitude of the forcing. Our perturbation analysis is based on a ladder o...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

On solving ordinary differential equations of the first order by updating the Lagrange multiplier in variational iteration ‎method

In this paper, we have proposed a new iterative method for finding the solution of ordinary differential equations of the first order. In this method we have extended the idea of variational iteration method by changing the general Lagrange multiplier which is defined in the context of the variational iteration method.This causes the convergent rate of the method increased compared with the var...

متن کامل

Mean-square stability properties of an adaptive time-stepping SDE solver

We consider stability properties of a class of adaptive time-stepping schemes based upon the Milstein method for stochastic differential equations with a single scalar forcing. In particular we focus upon mean-square stability for a class of linear test problems with multiplicative noise. We demonstrate that highly desirable stability properties can be induced in the numerical solution by the u...

متن کامل

Stability analysis of impulsive fuzzy differential equations with finite delayed state

In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010